
Published in the proceedings of the 2nd IEEE International Symposium on Cluster Computing and the Grid (CCGrid2002), May 21-24, 2002, Berlin, Germany.

The gSOAPToolkit for Web Services and Peer-To-Peer Computing Networks

Robert A. van Engelen∗ and Kyle A. Gallivan†

Department of Computer Science and School of Computational Science and Information Technology
Florida State University

Tallahassee, FL 32306-4530
{engelen,gallivan}@cs.fsu.edu

Abstract

This paper presents thegSOAPstub and skeleton com-
piler. The compiler provides a unique SOAP-to-C/C++
language binding for deploying C/C++ applications in
SOAP Web Services, clients, and peer-to-peer computing
networks. gSOAP enables the integratation of (legacy)
C/C++/Fortran codes, embedded systems, and real-time
software in Web Services, clients, and peers that share
computational resources and information with other SOAP-
enabled applications, possibly across different platforms,
language environments, and disparate organizations lo-
cated behind firewalls. Results on interoperability, legacy
code integration, scalability, and performance are given.

1. Introduction

Many recent efforts in distributed computing are aimed
at developing general-purpose distributed computing infras-
tructures, providing integrated security, availability, scala-
bility, reliability, and manageability for general distributed
computing applications. Examples of infrastructures ex-
ploring general distributed computing are Charlotte [1],
Javalin/Javalin++ [13, 14], HARNESS [2], Legion [10], and
Globus [7]. These infrastructures address the technologies
needed to build computational grids [8]. Grids are persis-
tent environments that enable software applications to inte-
grate instruments, displays, computational and information
resources that are managed by diverse organizations.

A number of distributed computing infrastructures em-
brased Java as the programming language of choice. Java
has many features that make it desirable for distributed
computing. Java’s low performance can sometimes be in-
creased through proprietary packages and compilation tech-
niques [12]. However, the integration of system software,
small-scale embedded systems, and real-time software re-

∗Supported in part by NSF grants CCR-0105422 and CCR-9904943
†Supported in part by NSF grant EIA-0072043

mains problematic. Because software development has be-
come more expensive than the cost of technology, porting
(legacy) codes to Java is not cost effective. The use of the
Java native interface can leverage production cost some-
what, but requires the writing of application wrapper rou-
tines by hand which is costly and error prone.

A more recent development is the Simple Object Ac-
cess Protocol (SOAP) [3]. SOAP is a versatile message
exchange format that is simple and light-weight. The XML-
based protocol is language and platform neutral, which
means that information sharing relationships can be ini-
tiated among disparate parties, across different platforms,
languages and programming environments. SOAP is not a
competitive technology to component systems and object-
request broker architectures such as the CORBA compo-
nent model [15] and DCOM, but rather complements these
technologies. CORBA, DCOM, and Enterprise Java [17]
enable resource sharing within a single organization while
SOAP technology aims to bridge the sharing of resources
among disparate organizations possibly located behind fire-
walls. SOAP applications exploit a wire-protocol (typically
HTTP) to communicate with Web Services to retrieve dy-
namic content. For example, real-time stock quote infor-
mation of a stock portfolio can be graphed on the display
of a cell phone or can be analyzed within a spreadsheet
program running on a desktop computer. This allows real-
time “what-if” scenarios and enables the development of
agents that access real-time information [21]. Other ex-
amples are the visualization of factory processes on PDAs,
control and visualization of large-scale simulations from a
desktop computer, the sharing of laboratory results using
cell phones, remote database access, and science portals.

This paper presents thegSOAPsoftware development kit
(SDK) [20]. ThegSOAPstub and skeleton compiler en-
ables (legacy) C/C++ and Fortran applications (via C-to-
Fortran bindings) to share computational resources and in-
formation with other applications, possibly across different
platforms, language environments, networks, and organiza-
tions. As a result, scientific applications, embedded sys-
tems, and real-time software can interoperate as clients, ser-

vices, or peers. The stringent memory and response time
requirements by these systems require efficient and special-
ized (de)marshalling algorithms. Especially important for
numerical applications and libraries to keep the optimized
data structures intact. Other SOAP C++ toolkits adopt class
libraries for SOAP-specific data types. The libraries use
pointers, lists, and heap space extensively. Such implemen-
tations are undesirable for legacy applications and embed-
ded and real-time systems because of the recoding effort
and the resulting indirect memory accesses, heap storage,
and performance degradation.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the key features of SOAP for Internet and
peer-to-peer computing. Section 3 introduces thegSOAP
compiler design, implementation, and use. Preliminary re-
sults are presented in Section 4, including interoperability,
legacy code integration, and scalability and performance
tests. Finally, Section 5 summarizes the conclusions.

2. The Simple Object Access Protocol

This section discusses SOAP and presents a brief
overview of SOAP APIs and SDKs.

2.1. Interoperability

SOAP is a language- and platform-neutral RPC protocol
that adopts XML as the marshalling format. SOAP appli-
cations typically use the firewall-friendly HTTP transport
protocol. These and other key interoperability features of
SOAP are summarized below:

Ubiquity. The SOAP protocol and its industry-wide sup-
port promises to make services available to users anywhere,
e.g. in cellphones, pocket PCs, PDAs, embedded systems,
and desktop applications.

Simplicity. SOAP is a light-weight protocol based on
XML. An example of a simple SOAP service is a sensor
device that responds to a request by sending an XML string
containing the sensor readout. This device requires limited
computing capabilities and can be easily incorporated into
an embedded system.

Services. SOAP Web Services are units of application
logic providing data and services to other applications over
the Internet or intranet. A Web Service can be as simple as
a shell or Perl script that uses the Common Gateway Inter-
face (CGI) of a Web server such as Apache. A web service
can also be a server-side ASP, JSP, or PHP script, or an exe-
cutable CGI application written in a programming language
for which an off-the-shelf XML parser is available.

WSDL. The Web Service Description Language (WSDL)
is an XML format for describing network services as ab-
stract collections of communication endpoints capable of

client

WSDL

Web

client
Java

serviceclient

C++

Perl

client
C#

develop

invoke

publish

Figure 1. Web Service, WSDL, and Clients

exchanging structured information. The platform- and
language-neutral WSDL descriptions published by Web
Services enable the automatic generation of SOAP stubs for
the development of clients within a specific programming
environment. The language-specific stubs can be used to in-
voke the remote methods of the Web Service, see Figure 1.

UDDI. The Universal Description, Discovery, and Inte-
gration (UDDI) specification provides a universal service
for registry, lookup, discovery, and integration of world-
wide business services [19]. WSDL descriptions comple-
ment UDDI by providing the abstract interface to a service.

Transport. A SOAP message can be sent using HTTP,
SMTP, TCP, UDP, and so on. A SOAP message can also be
routed, meaning a server can receive a message, determine
that it is not the final destination, and route the message
elsewhere. During the routing, different transport protocols
can be used.

Security. SOAP over HTTPS is secure. The entire HTTP
message, including both the headers and the body of the
HTTP message, is encrypted using public asymmetric en-
cryption algorithms. SOAP extensions that include digital
signatures are also available, see W3C note [4]. Single sign-
on (authentication) and delegation mechanisms [8] required
for Grid computing can be easily built on top of SOAP.

Firewalls. Firewalls can be configured to selectively al-
low SOAP messages to pass through, because the intent of a
SOAP message can be determined from the message header.

Compression. HTTP1.1 supports gzipped transfer encod-
ings, enabling compression of SOAP messages on the fly.

Persistence. Long-term data persistence using NFS or
database storage is only useful if the protocols and con-
tent encoding formats also persist in the form of meta-data.
Applications are frequently upgraded, or worse, support is
terminated. Software upgrades can make it difficult to ex-
tract data stored in outdated formats and often this means
that information is lost. Because SOAP is based on XML
and XML is often heralded as “self-describing”1, the SOAP
message and its content can be easily made persistent.

1XML documents contain meta-data such as type information. XML
schemas formally describe the structure and content of XML documents.

2

Transactions. SOAP provides transaction-handling ca-
pabilities through the SOAP message header part. The
transaction-handling capabilities allow a state-full imple-
mentation of a Web Service by a server-side solution uti-
lizing local persistent storage media.

Exceptions. SOAP supports remote exception handling.

The possible disadvantages of SOAP are:

GC. The absence of mechanisms for distributed garbage
collection (GC) and the absence of objects-by-reference.

Floats. Floats and doubles are represented in decimal
(text) form in XML, which can possibly contribute to a loss
of precision. Other SOAP encodings such as hexBinary and
Base64 can be used to encode e.g. IEEE 754 standard float-
ing point values, but this may hamper the interoperability of
systems that use other floating point representations.

2.2. SOAP Toolkits for Internet Computing

A large number of SOAP toolkits are available for dif-
ferent programming languages and platforms, see e.g. [11].
Toolkits range from simple APIs to elaborate SDKs for
SOAP client and server development. Examples are
SOAP::Lite for Perl, Apache SOAP for Java, the .NET
framework SDK, and thegSOAPtoolkit for C and C++.

The use of SOAP for simple applications does not nec-
essarily require an elaborate SDK for the application to
participate in a distributed computing infrastructure. A
SOAP application can be as simple as a script that prints
an XML string. Consider for example the shell script
shown in Figure 2. Theecho command sends an XML-
formatted request for a sensor readout to a simple SOAP
remote method dispatcher utilitydispatch . This utility
simply forwards the string to a SOAP service connected
to dbsrv.cs.fsu.edu port 18080 by opening a socket,
passing the string on to the service, and by returning the
response to the standard output stream. In Figure 2, the
deser utility applies an XSLT transformation to the SOAP
XML response to emit the result in a readable text form.
XSLT transformations can be used to transform XML into
any format, including plain text, HTML, and PDF.

Script languages such as Perl provide flexible SOAP im-
plementations that typically support dynamic stub genera-
tion by utilizing WSDL descriptions. Figure 3 depicts a Perl
SOAP client implemented with SOAP::Lite that utilizes the

#!/bin/sh
echo "<e:Envelope xmlns:e=... xmlns:n=...><e:Body>\
<n:getReadout><sensor>$1</sensor></n:getReadout>\
</e:Body></e:Envelope>"\
| dispatch "dbsrv.cs.fsu.edu:18080" | deser

Figure 2. A Shell-Based SOAP Client

use SOAP::Lite;
print SOAP::Lite

-> service(
’http://www.xmethods.net/sd/StockQuoteService.wsdl’)

-> getQuote(’AOL’);

Figure 3. A Perl SOAP Client

WSDL description of the XMethods Delayed Stock Quote
service to dynamically create agetQuote proxy and stub
to request a stock quote.

Most Java SOAP toolkits offer run-time stub genera-
tion facilities using dynamic type inspection and/or provide
compile-time stub generation. The lower response time of
a client that uses a pre-compiled stub improves the over-
all quality of service of the client. Precompiling the stub
routines saves the overhead for generating these routines at
run time via dynamic type inspection. An example Apache
SOAP 2.2 Java client that accesses the Delayed Stock Quote
Service has about 40 lines of Java code (not shown).

SOAP C++ toolkits adopt class libraries for marshalling
SOAP data types with an XML parser and generator. Each
SOAP data type, which is essentially an XML schema type,
has a corresponding class in the library. The library ap-
proach forces a user to adapt the application logic to these
libraries or the user has to implement wrappers by hand that
copy the application-specific data structures into the SOAP-
specific data structures and vice-versa.

2.3. SOAP Peer-To-Peer Computing

SOAP does not enforce a strict client-server relationship
but does not endorse a specific peer-to-peer (P2P) architec-
ture either. A platform-independent SOAP P2P computing
infastrucure can be build using JXTA [18] and the .NET
framework.

The use of a shell for “on the fly” distributed computa-
tion with pipes to connect applications as shown in Figure 2
is somewhat similar to the JXTA shell. However, in con-
trast to Unix pipes, JXTA pipes are bidirectional allowing
applications to be peers with respect to eachother.

The MS .NET framework SDK enables the develop-
ment of P2P infrastructures with UDDI, WSDL, and SOAP
clients and Web Services developed in languages such as
Visual Basic, C#, C++, and Haskell. The .NET architec-
ture includes the Common Language Runtime (CLR) for
managing objects. The CLR can perform SOAP message
exchange as part of the serialization capabilities of objects
managed by the CLR. This solution is platform-specific and
the strict use of managed objects on the heap has an impact
on memory use and overall performance. Furthermore, Vi-
sual C++ applications have to use an interface to the CLR
to create and use managed objects which adds a whole new
layer of complexity to pure C++ applications.

3

3. ThegSOAPStub and Skeleton Compiler

This section motivates the design of thegSOAPstub and
skeleton compiler and briefly presents its implementation.

3.1. Design Characteristics

The criticalgSOAPcompiler design characteristics are:

Precompiling (De)Marshalling Routines. The stubs,
skeletons, serialization, and deserialization routines are pre-
compiled to minimize dynamic type inspection. Deserial-
izion deals with SOAP “forward” references by tracking
unresolved pointers. Serialization is a two-stage process to
comply to SOAP’s multi-referenced object encoding rules.

Support for Native Data Types. The pre-compiled mar-
shalling routines serialize and deserialize native C/C++ and
user-defined data types and this data is not extended with
additional information such as tags. As a result, restructur-
ing compiler techniques can be used to compile and opti-
mize an application’s kernel routines together with the mar-
shalling routines. For example, a restructuring compiler can
optimize data placement in memory to reduce memory ac-
cess latencies [16]. Also cache-conscious data placement
strategies can be used to improve memory access [5].

Minimizing Memory Operations. To avoid data copy-
ing overhead, serialization and deserialization operations
are performedin situ on the application’s native data struc-
tures that are static, stack, and/or heap allocated.

Mimimizing Memory Use. Stand-alone client and server
executables have a small memory footprint (typically less
than 150K). This enables deployment of SOAP clients and
services in small-scale embedded systems. The commonly
used technique to buffer the whole output message to de-
termine the HTTP message length is expensive for small
devices such as PDAs. Instead, the message length is deter-
mined in a separate serialization pass (two-stage “count and
send” serialization). Additional memory overhead is lim-
ited to the use of a hash table required for the determination
of multireferenced objects. The size of the hash table corre-
sponds to the number of pointers within the marshalled data
structures.

Efficient XML Parsing. gSOAP’s runtime library in-
cludes a customized parser that parses XML on demand
without keeping parts of the XML document in memory.

Preservation of Structure. When a data structure is en-
coded in SOAP and decoded on the receiving side it is
an exact copy of the structure of the original. The copy,
however, may occupy a different memory region, including
static/stack/heap allocations, and therefore pointers within
the copy may use different address values than the original.
To preserve structure, SOAP multireferenced object encod-
ing is used to encode arbitrary (cyclic) graph structures.

Legacy Application Integration. The use of pre-
compiled marshalling routines for native C/C++ and user-
defined data types enables the integration of C and C++
legacy applications within SOAP clients, services, and
peers. This also enables the integration of Fortran legacy
applications within SOAP clients and services through the
use of existing C-to-Fortran bindings provided by the Unix
linker or through MS Windows DLLs.

Platform Independence. The compiler generates
platform-independent C and C++ source code for the
stubs, skeletons, and marshalling routines. SOAP
clients and services run on Linux, Unix, MS Windows
98/2000/NT/XP/CE, PocketPC, and embedded systems.

3.2. Implementation

The stubs of the remote methods to be invoked by a
SOAP client are generated by a utility that translates the
WSDL service description of a Web Service into C and
C++ declarations that are stored in a standard header file.
This translation makes the remote method proxy interface
transparent to a user. ThegSOAPcompiler executable,
soapcpp , processes the C/C++ declarations and generates
C and/or C++ source code stubs for integration in a client.

This unique aspect ofgSOAP’s SOAP-to-C/C++ lan-
guage binding is illustrated with an example SOAP client.
The client program prints the stock value of the stock
ticker symbol provided as an argument. Thequote.h
header file shown in Figure 4 is produced from the
XMethods Delayed Stock Quote service WSDL. This func-
tion prototype specifies all of the necessary details for
soapcpp to generate the stub. The string and float
primitive types of the remote method parameters are en-
coded and decoded in SOAP as standardized XML schema
types (i.e. xsi:type=”xsd:string” and xsi:type=”xsd:float”).
The client program is shown in Figure 5. The client
uses the proxysoap call ns getQuote generated by
soapcpp from quote.h . The source code includes the
namespaces table with XML namespace URIs. The
service namespace URI isurn:xmethods-delayed-
quotes which is bound to thens prefix.

The implementation of a SOAP Web Service is initiated
with the writing of an interface description in a C or C++
header file. The header file contains the declaration of the
remote methods and the data structures used by the remote
method parameters. Thesoapcpp compiler generates the
skeleton and marshalling routines from the header file. Also
a WSDL service description is generated bysoapcpp . An
example Web Service is presented in Section 4.1.

int ns__getQuote(char *symbol, float &result);

Figure 4. quote.h

4

const char endpt[] = "http://services.xmethods.net/soap";
main(int argc, char **argv)
{ float q;

if (!soap_call_ns__getQuote(endpt, "", argv[1], q))
cout << q;

}
struct Namespace namespaces[] = {
{"SOAP-ENV","http://schemas.xmlsoap.org/soap/envelope/"},
{"SOAP-ENC","http://schemas.xmlsoap.org/soap/encoding/"},
{"xsi", "http://www.w3.org/2001/XMLSchema-instance"},
{"xsd", "http://www.w3.org/2001/XMLSchema"},
{"ns", "urn:xmethods-delayed-quotes"},
{NULL, NULL} }

Figure 5. A C++ SOAP Client

3.3. Marshalling and Demarshalling

Thesoapcpp compiler generates (de)marshalling rou-
tines that are SOAP 1.1 and mostly SOAP 1.2 compliant.
The C/C++ data types are encoded and decoded as SOAP
XML schema types as follows:

Basic Types. The primitive C types (includingbool ,
char* , wchar t* , andtime t) are encoded as built-in
primitive XML schema types, such as xsd:int, xsd:double,
and xsd:string. Atypedef construct is used to inform the
soapcpp compiler how to store XML schema types, e.g:

typedef double xsd decimal;

This allows (legacy) applications to use doubles with no
change, while the doubles are encoded and decoded as
e.g. xsd:decimal schema types.

Enumerations. C enumerations are recognized by the
soapcpp compiler and (de)serialized with symbolic
names as XML schema enumeration types.

Structs. The ComplexType XML schema type is used for
data structures that resemble structs with fields in SOAP.

Classes. Like structs, the ComplexType XML schema
type is used for encoding classes instances. Only single
class inheritance is supported due to SOAP encoding con-
straints. Serialization and deserialization methods are au-
tomatically added bysoapcpp to class definitions. The
methods recursively encode/decode all fields of a class. Dy-
namic method binding is used to serialize derived class in-
stances at run-time. This enables “black-box” clients and
services that operate on derived class instances.

Pointers. Pointers are not explicitly part of a SOAP
payload. However, SOAP supports multi-referenced ob-
jects and nil objects in XML which allows serialization
of pointer-like structures such as lists, trees, and arbitrary
(cyclic) graphs. Such structures keep their structural iden-
tity. The compiler assumes that all pointers used in an appli-
cation point to a single object in memory andvoid pointers
are not supported. Applications that use pointers to point to
multiple objects need to use dynamic arrays instead to re-
veal the number of elements refered to by the pointer to the
serializers, see dynamic array encoding below.

Fixed-Size Arrays. Fixed-size C/C++ arrays are mar-
shalled as SOAP-ENC:Array types.

Dynamic Arrays. Many C/C++ applications use pointers
to arrays. This poses a problem for the serializers to get
the size of the array pointed to. The compiler recognizes a
special data structure for dynamic arrays that are declared
as a struct or class with a pointer field and a size field, e.g.

struct ArrayOfInt { int * ptr; int size; } A

declares an arrayA of ints which is encoded as a SOAP-
ENC:Array with arrayType xsd:int[]. Multi-dimensional ar-
rays can be declared in a similar way.

Compound Types. A SOAP compound type is a
struct/class, array, or a list of unordered elements. Such
lists are supported through the declaration of a dynamic ar-
ray with a namespace prefix for the struct/class name, e.g.

class ns vector { X * ptr; int size; } V

declares a vectorVof Xencoded as a ns:vector schema type.

Special Types. The xsd:base64Binary, xsd:hexBinary,
and SOAP-ENC:base64 XML schema types are useful for
transmitting raw binary data such as images. These types
are declared as a dynamic array of typeunsigned char .

4. Results

This section presents preliminary test results on inter-
operability, legacy code integration, scalability, and perfor-
mance of clients and services developed withgSOAP.

4.1. Test 1: Interoperability

gSOAPparticipates in White Mesa’s interop lab [22],
which is the premier site for SOAP toolkit development
and interop testing. In addition, example clients and ser-
vices were developed withgSOAPto test interoperability
with various real-world services offered by Xmethods [23],
see Table 1.

Name Owner Toolkit
Delayed Stock Quotes XMethods GLUE
Currency Exchange XMethods GLUE
XMethods Filesystem XMethods Apache
XMethods Listings XMethods Apache
Flight Tracker ObjectSpace Apache
Who Is Shiv Kumar Delphi
Calculator XML Components XMLCLX
UDDI Proxy Service DSTC Pty Ltd MS. NET
Glossary Luhala SOAPLite

Table 1. Services Used in Interop Tests

5

n1__getQuote(char *symbol, float &result);
n2__getRate(char *country1, char *country2,

float &result);
n3__getQuote(char *symbol, char *country, float &result);

Figure 6. quotex.h

main()
{ soap_serve(); // wait for request and call skeleton
}
char endpt[] = "http://services.xmethods.net/soap";
n3__getQuote(char *symbol, char *country, float &result)
{ float q, r;

if (soap_call_n1__getQuote(endpt, "", symbol, q)
|| soap_call_n2__getRate(endpt, "", "us", country, r))

return SOAP_FAULT; // pass exception on to the caller
result = q*r;
return SOAP_OK; // all OK

}

Figure 7. quotex.cpp

We illustrate how the functionalities of the XMethods
Delayed Stock Quote and Currency Exchange services can
be combined into one new Web Service that accepts a
stock ticker name and a currency symbol and returns the
currency-converted stock quote. This new service acts both
as a server and as a client: after accepting stock ticker name
and currency symbol from a client it communicates with
the XMethods services to retrieve the stock quote in a dollar
amount and to convert the quote into the requested currency.

Figure 6 shows the header file input tosoapcpp that
serves as the interface definition of the three remote meth-
ods of the three Web Services involved. Each remote
method is specified as a function prototype. The remote
method name, parameter names, and types are specific to
each service and can be extracted from the published WSDL
descriptions. Because C lacks a means for explicitly de-
noting in/out parameter passing modes,soapcpp uses the
convention that the last parameter of the function is the out-
put parameter. The integer return value is used for SOAP
exception handling and indicates success or failure.

Figure 7 depicts the full server code (except for the
namespace URI table which is omitted from the figure).
When the service is deployed as a simple CGI application,
thesoap serve routine called inmain waits for requests
on the input stream, inspects the intended remote method
invocation from the XML payload, and calls the appropri-
ate skeleton routine. The skeleton routine demarshalls the
request and calls then3 getQuote routine. This rou-
tine in turn calls the proxies of then1 getQuote and
n2 getRate remote methods of the XMethods services
to retrieve the current stock quote and currency exchange
rate. The routine computes the currency-converted stock
quote and returnsSOAPOKindicating success. The skele-
ton converts the result in a SOAP compliant response and
sends the response back to the client.

class ivector
{ int *__ptr; int __size; ... // class methods };
class vector
{ double *__ptr; int __size; ... // class methods };
class matrix
{ vector *__ptr; int __size; ... // class methods };
ns__ludcmp(matrix *a, struct ns__ludcmpResponse

{matrix a; ivector i; double d;} &result);

Figure 8. lu.h

ns__ludcmp(matrix *a, struct ns__ludcmpResponse &result)
{ result.a = *a;

return ludcmp(result.a, result.i, result.d);
}
ludcmp(matrix &a, ivector &i, double &d) { ... }

Figure 9. luserver.cpp

4.2. Test 2: Legacy Code Integration

The gSOAPstub and skeleton compiler generates mar-
shalling routines for user-defined C/C++ data structures,
thereby enabling the integration of legacy codes in SOAP
applications. Consider for example the LU decomposition
algorithmludcmp and related routineslubksb (backsub-
stitution), lusol (solver), andluinv (inversion) of Nu-
merical Recipies in C [6]. We implemented these in a Web
Service withgSOAP. Figure 8 depicts the header file seg-
ment to declareludcmp . The ns ludcmpResponse
struct contains the output parameters: the decomposed ma-
trix a, reordering index vectori , and a doubled.

Figure 9 depicts the server code with the implementa-
tion of thens ludcmp remote method. The algorithms
in Numerical Recipies in C use dynamic array structures for
matrices and vectors, i.e. a matrix is an array of pointers to
arrays. We implemented these asmatrix , vector , and
ivector classes with pointers and size information. The
size information is required for serialization and deserial-
ization (see also Section 3.3). The use of classes for arrays
did not require significant changes to the originalludcmp
routine. Thens ludcmp function is a simple interface to
the ludcmp routine. Becauseludcmp appliesin situ LU
decomposition, prior to callingludcmp the interface sets
the output matrix reference to the input matrix pointer.

Figure 10 illustrates the service architecture. The SOAP
interface for the service is generated bysoapcpp . The in-

algorithms

ludcmp

lubksb

lusol

luinv

skeleton

skeleton

skeleton

skeleton deserializeserve

SOAP
request

SOAP
response

soapcpp generated interface
deserialize
serialize
deserialize
serialize

serialize
deserialize
serialize

Figure 10. Linear Solver Service

6

terface consists of thesoap serve routine that dispatches
the requests to the generated skeleton routines of the remote
methods. The skeleton demarshalls the request parameters,
calls the solver routine, (e.g.lusol in the figure), mar-
shalls the result parameters, and sends the response back to
the client. The linear solver service runs as a CGI appli-
cation or as a stand-alone server serving requests via BSD
Unix sockets.soapcpp also generates a WSDL descrip-
tion for service discovery and client access.

This example demonstrates that minimal effort is re-
quired to incorporate legacy C routines in a Web Service.
More importantly, the critical data structures of the routines
(pointers to arrays of doubles) could be used, however with
the necessary embedding of array size information for the
gSOAPcompiler-generated (de)serializers.

4.3. Test 3: Scalability and Performance

The payload of a SOAP remote method request and re-
sponse message requires more bandwidth than protocols
that adopt binary serialization formats such as Java’s ob-
ject serialization format. To improve efficiency, a multi-
protocol approach can be used [9] but that complicates im-
plementation by requiring multiple protocol APIs. Instead,
compression methods such as HTTP 1.1 gzipped transfer
encodings should be used with SOAP to significantly re-
duce bandwidth demands2.

The gSOAPstub and skeleton compiler improves mar-
shalling performance significantly by providing fastin situ
(de)serialization of data structures. SOAP C/C++ client
and service implementations tend to be much more efficient
compared to implementations in other languages. We ob-
served that Perl SOAP::Lite and Apache 2.2 SOAP client
implementations of the XMethods Delayed Stock Quote
service were respectively about 3 times slower and 2 times
slower compared to agSOAPclient implementation in C.

We tested the scalability and performance of the LU de-
composition Web Service and a Web Service that we devel-
oped to produce magic squares. Both services have a high
bandwidth demand because of the matrices and vectors con-
tained in the request and response messages. The service
applications were compiled with gcc and tested on a dual
Pentium III 550MHz machine with 1G memory and 256K
level-1 cache running Red Hat Linux. The client applica-
tions were compiled with gcc and tested on a dual Pentium
III 933MHz machine with 256K memory and 256K level-1
cache running Red Hat Linux. The machines are connected
with a 10BaseT Ethernet LAN with low to moderate traffic.
Tests were performed by invoking remote methods a 100
times and during different times a day.

On the dual Pentium III 550MHz machine, the mar-
shalling routines achieved≈60,000 two-stage “count and

2XML compression rates are typically very high.

Figure 11. Elapsed Time (ms) of Remote
Method Invocation of luinv by a Client

Figure 12. Elapsed Time (ms) of Remote
Method Invocation by a Client of a Magic
Square Service Compared to Java RMI

send” serializations3 per second and the demarshalling rou-
tines achieved≈90,000 deserializations per second over the
standard 10BaseT Ethernet LAN.

Figure 11 shows the (de)marshalling+communication
overhead compared to the compute time for matrices up to
order 100. The (de)marshalling+communication overhead
is the total time for marshalling a matrix by the client stub,
sending the uncompressed matrix over the 10BaseT Ether-
net, demarshalling the matrix by the skeleton, marshalling
the inverted matrix, and sending the inverted matrix back to
the client who demarshalls it. The compute time for matrix
inversion byluinv accounts for≈20% of the total elapsed
time. The remaining 80% is largely consumed by the over-
head introduced by (de)marshalling and communication.

Figure 12 shows the scalability and performance of
SOAP remote method invocation by a client of the magic
squares service compared to a Java 1.2.2 RMI Linux imple-
mentation of a magic squares service and client (the matrix
is a Java int[][] array). Two SOAP service implementations
were tested: one with the 32-bit integer matrices marshalled
as SOAP arrays and one that uses SOAP Base64 encod-
ing. A Base64 binary encoded matrix takes 33% more space
compared to internal storage, but is far less demanding on

3One serialization of one double floating point value.

7

Figure 13. Elapsed Time (ms) of Remote
Method Invocation by a Client of a CGI-Based
Magic Square Web Service

bandwidth compared to SOAP arrays. Thex-axis denotes
the size of the matrix as the number of matrix elements to
illustrate the linear scalability of the remote method invoca-
tion (the magic squares algorithm is linear in the number of
elements of a matrix). Java RMI performance is better for
larger matrices due to optimizations in the Java RMI socket
layer which have not yet been implemented ingSOAP.

Figure 13 depicts the elapsed times of the two different
magic squares service implementations deployed as CGI
applications on an Apache Web server 1.3.22 running on
a dual Pentium III 550MHz machine with 1G memory and
256K level-1 cache. The services are scalable, but CGI in-
troduces a significant overhead.

5. Conclusions

The SOAP protocol and the abundance of SOAP toolkits
promise to make the development of business and science
portals with programming- and platform-neutral Web Ser-
vices easy and very likely in the near future. ThegSOAP
stub and skeleton compiler provides a unique SOAP-to-C++
language binding for the development of SOAP-enabled ap-
plications such as clients, services, and peers. Other SOAP
C++ toolkits adopt a SOAP-centric view and offer SOAP
APIs for C++ that require the use of class libraries for
SOAP-like data structures. This solution often forces a user
to adapt the application logic to these libraries, which is
undesirable for the integration of legacy applications, em-
bedded, and real-time systems. In contrast,gSOAPpro-
vides transparent SOAP API through the use of compiler
technology that hides irrelevant SOAP-specific details from
the user. The compiler automatically maps native and user-
defined C and C++ data types to semantically equivalent
SOAP data types and vice-versa. As a result, full SOAP
interoperability is achieved with a simple API relieving the
user from the burden of SOAP details and enabling him or
her to concentrate on the application-essential logic.

References

[1] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Char-
lotte: Metacomputing on the web. InThe 9th Int’l Confer-
ence on Parallel and Distributed Computing Systems, 1996.

[2] Beck et al. HARNESS: A next generation distributed virtual
machine.Future Generation Computer Systems, 15, 1999.

[3] D. Box et al. Simple object access protocol 1.1, 2000.
http://www.w3.org/TR/SOAP.

[4] A. Brown et al. SOAP security extensions: Dig-
ital signature. Technical report, W3C, 2001.
http://www.w3.org/TR/SOAP-dsig.

[5] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious struc-
ture layout. InSIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 1–12, 1999.

[6] B. Flannery, W. Press, S. Teukolsky, and W. Vettering.Nu-
merical Recipes in C. Cambridge University Press, Cam-
bridge UK, 2nd edition, 1992.

[7] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.International Jnl. of Supercomputer Ap-
plications, 11(2):115–128, 1997.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid. International Journal of Supercomputer Applications,
15(3):200–222, 2001.

[9] M. Govindaraju et al. Requirements for and evaluation of
RMI protocols for scientific computing. InSupercomputing,
2000.

[10] A. Grimshaw and W. Wulf. The legion vision of a worldwide
virtual computer.CACM, 40(1):39–45, 1997.

[11] P. Kulchenko. SOAP::Lite for Perl.
http://www.soaplite.com.

[12] J. Moreira, S. Midkiff, M. Gupta, P. Artigas, P. Wu, and
G. Almasi. The NINJA project.CACM, 44(10):102–109,
2001.

[13] M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello.
Javalin++: Scalability issues in global computing. InACM
Java Grande, pages 171–180, San Fransisco, CA, 1999.

[14] M. Neary, B. Christansen, P. Cappello, and K. Schauser.
Javalin: Parallel computing on the internet.Future Gen-
eration Computing Systems, 15:659–674, 1999.

[15] OMG. CORBA component model. http://www.omg.org.
[16] G. Rivera and C.-W. Tseng. Data transformations for elim-

inating conflict misses. InACM SIGPLAN Converence on
Programming Language Design and Implementation, Mon-
treal, Canada, June 1998.

[17] Sun Microsystems. Enterprise java beans technology.
http://java.sun.com/products/ejb/.

[18] Sun Microsystems. Project JXTA: Technical specification,
version 1.0, 2001.

[19] UDDI. The universal description, discov-
ery, and integration (UDDI) specification.
http://www.uddi.org/specification.html.

[20] R. van Engelen. The gSOAP toolkit 2.1, 2001.
http://sourceforge.net/projects/gsoap2.

[21] R. van Engelen, K. Gallivan, G. Gupta, and G. Cybenko.
XML-RPC agents for distributed scientific computing. In
IMACS’2000 Conference, Lausanne, Switzerland, 2000.

[22] White Mesa. White mesa interop lab.
http://www.whitemesa.com/interop.htm.

8

[23] XMethods. XMethods service listings.
http://www.xmethods.com.

9

